
 

 

 

Supplementary Fig. 1 

(a) Polysome profiles of two independent experiments for unmodified (U) RNA eGFP, 

pseudouridine (Ψ) eGFP, 1-methyl-pseudouridine (m1Ψ) eGFP, and unmodified (U) RNA 

mCherry libraries. The library IVT mRNA were transfected into two independent cell plates, and 

polysome profiles were harvested independently. The polysome profiling protocol for the mCherry 

experiments differed from the eGFP experiments (Online Methods) (b) Mean ribosome load 

(MRL) correlation between experiments (n = 20,000).  (c) Polysome profile of the designed library 

which includes the sub-libraries: human UTRs and SNVs, target ribosome loading, step-wise 

evolution, eGFP controls, 2,000 mCherry library UTRs, and additional random UTRs. 

  



 

 

 

Supplementary Fig. 2 

(a) The polysome profile and collected fractions of the eGFP unmodified RNA experiment #1 

from two independent polysome profiling experiments. For all polysome profiles, the median 

number of processed fractions was 13. Some fractions were pooled to accommodate individual 

polysome peaks. (b) Out-of-frame upstream open reading frames (OOF uORFs) and upstream 

AUGs (uAUGs) cause reduced loading of ribosomes, compared to sequences without uAUGs 

(No uAUG). In-frame uAUGs (IF uAUGs) do not show a reduction in ribosome loading (p-

values from two-sided t-test are shown). Purines at the -3 position of the Kozak show increased 

loading at the intended start codon, but reduced loading when preceding OOF uORFs and 

uAUGs. P-values from two-sided t-test of impact of purines vs. pyrimidines at -3 position in four 

groups were computed; No uAUG: 5e-103, IF uAUG: 8e-29, OOF uAUG: 0, OOF uORF: 0. For 16 

box plots from left to right: (n = 7,008; min., 2.677; quartile (Q)1, 7.592; median, 7.876; Q3, 

8.092; max., 9.253), (3,004; 2.941; 7.406; 7.687; 7.916; 9.389), (4,706; 2.871; 7.563; 7.855; 

8.087; 9.214), (4,049; 3.238; 7.425; 7.712; 7.951; 8.824), (1,967; 2.678; 7.415; 7.79; 8.102; 

9.403), (1,006; 3.011; 7.453; 7.846; 8.107; 8.727), (1,443; 2.694; 7.43; 7.808; 8.108; 8.95), 

(1,883; 2.862; 7.129; 7.671; 7.998; 8.835), (4,683; 0.479; 3.238; 3.702; 4.278; 6.988), (3,040; 

2.484; 4.362; 5.319; 6.174; 8.126), (4,041; 1.71; 3.416; 3.993; 4.657; 7.592), (3,436; 2.379; 

4.098; 4.999; 5.796; 8.224), (2,854; 2.427; 3.97; 4.501; 5.04; 7.215), (1,873; 2.419; 4.758; 5.875; 

6.729; 8.316), (2,270; 2.625; 4.186; 4.76; 5.363; 7.48), (2,747; 1.605; 4.546; 5.479; 6.242; 

7.948). (c) Boxplots showing the relationship between mean ribosome load and minimum free 

energy (MFE) were calculated by finding the MFE of 20,000 UTRs using Nupack. Ribosome 

loading increases as the predicted MFE increases (p-values from two-sided t-test were shown). 
For 7 box plots from left to right: (n = 406; min., 3.634; quartile (Q)1, 6.851; median, 7.221; Q3, 

7.531; max., 8.449), (1,649; 2.871; 7.09; 7.415; 7.722; 8.744), (4,248; 2.677; 7.336; 7.634; 

7.887; 8.948), (6,519; 3.273; 7.56; 7.811; 8.024; 9.386), (5,185; 3.469; 7.708; 7.921; 8.115; 

9.032), (1,680; 3.118; 7.819; 8.017; 8.18; 8.837), (215; 7.011; 7.859; 8.049; 8.222; 8.612). 

  



 

 

 

Supplementary Fig. 3 

Effect of non-AUG translation initiation sites (TIS) on ribosome loading. When analyzing non-

AUG TIS, all sequences with AUG were removed. (a) UTRs were grouped based on the presence 

of AUG, CUG, GUG, or UUG between positions -21 through -8 and by the TIS context in which 

they were found. All AUG TISs dramatically reduce ribosome loading when in an out-of-frame 

position and the extent of repression is dependent on the strength of the TIS context. For CUG and 

GUG, there is a minor reduction in ribosome loading when in the out-of-frame position and within 

a strong TIS context (p-values from two-sided t-test are shown). UUG shows no effect. For 6 box 

plots in AUG from left to right: (n = 6,693; min., 1.622; quartile (Q)1, 4.32; median, 5.271; Q3, 

6.205; max., 8.384), (2,490; 1.802; 5.115; 6.591; 7.648; 9.15), (7,535; 1.725; 3.562; 4.177; 4.889; 

8.316), (2,390; 2.586; 4.708; 6.515; 7.689; 9.695), (3,069; 1.678; 3.24; 3.752; 4.46; 8.308), (908; 

2.667; 4.467; 6.353; 7.566; 8.718). For 6 box plots in CUG from left to right: (2,330; 3.355; 7.415; 

7.755; 8.009; 8.945), (931; 3.491; 7.45; 7.755; 8.013; 9.189), (2,150; 3.549; 7.473; 7.772; 8.022; 

8.763), (757; 3.335; 7.455; 7.792; 8.035; 9.253), (796; 2.871; 7.138; 7.515; 7.827; 8.621), (349; 

3.846; 7.384; 7.73; 7.978; 8.564). For 6 box plots in GUG from left to right: (2,392; 2.677; 7.416; 

7.755; 8.004; 8.763), (972; 4.61; 7.403; 7.73; 7.994; 8.664), (2,079; 2.871; 7.431; 7.744; 8.009; 



 

 

8.678), (816; 3.355; 7.446; 7.763; 8.021; 8.681), (654; 3.29; 7.286; 7.66; 7.93; 8.952), (299; 3.702; 

7.413; 7.72; 7.975; 8.588). For 6 box plots in UUG from left to right: (2,297; 3.491; 7.542; 7.842; 

8.073; 8.952), (934; 3.946; 7.51; 7.846; 8.066; 8.788), (2,000; 2.314; 7.532; 7.834; 8.082; 8.681), 

(783; 4.109; 7.555; 7.861; 8.104; 9.189), (779; 3.84; 7.482; 7.802; 8.028; 8.613), (295; 4.576; 7.48; 

7.772; 8.063; 8.66). (b) Presence of out-of-frame CAG and GAG, single base mismatches of CUG 

and GUG, does not cause reduced mean MRLs. 

  



 

 

 

Supplementary Fig. 4 

(a) The repressive strength of all out-of-frame variations of NNNCUGNN. The single-mismatch 

3-mers CAG and CUA were included as controls. The “strong” (most repressive) TIS consensus 

sequence matches that of AUG – A/G at -3, CC at -2 and -1, and GC at +4 and +5. The “strong” 

and “weak” TIS sequences of CAG and CUA are GC-rich and AU-rich respectively, reflecting the 

repressive nature of GC-rich sequences rather than likelihood of translation initiation. When 

analyzing non-AUG TIS, all sequences with AUG were removed. (b) The repressive strength of 

all out-of-frame variations of NNNGUGNN. The 3-mers GAG and GAA were included as 

controls. The “strong” TIS consensus sequence does not match the pattern of the consensus 

sequence of AUG and CUG. Like the control 3-mers, the “strong” and “weak” sequences are 

simply GC-rich and AU-rich, respectively. When analyzing non-AUG TIS, all sequences with 

AUG were removed.  



 

 

 

Supplementary Fig. 5 

Model generalization between coding sequences. (a) A similar randomized 5′ UTR library was 

made but with eGFP replaced with mCherry (200k unique sequences – no 5′ UTRs are shared 

between the two libraries). Two independent experiments were evaluated via polysome profiling 

and modeling. Model performance – r2 within each box of the heatmap -  was cross-tested between 

all CDS / replicate test data. The mCherry models generalize well with eGFP, while the eGFP 

models do to a lesser extent. This may be due to differences between polysome profiling 

experimental conditions (Online Methods, n = 20,000). (b) Polysome profiling of 2,000 UTRs 

from the eGFP library but with eGFP replaced with mCherry. The MRL between the eGFP and 

mCherry data are highly correlated (r2: 0.8, n = 2,000).  

  



 

 

 

Supplementary Fig. 6 

(a) Position-specific 5-mer linear model. UTRs were encoded such that 5-mers and the position in 

which they occur in a sequence serve as features for linear regression. Position information is 

especially important for uATGs where placement relative to the CDS determines whether they are 

in-frame or out-of-frame. (b) k-mer models ranging from 1 - 7 were tested and the 5-mer model 

showed the best performance of the set (r2: 0.66, n = 20,000).  

  



 

 

 

Supplementary Fig. 7 

(a) The number of sequencing reads per UTR in the test set affects the observed model 

performance. Sequences were sorted high to low by the total number of sequencing reads across 

all polysome fractions. A sliding window of 20k sequences were used as test sets and the remaining 

sequences were used for training (n = 20,000). (b) Model quality decreases as fewer UTRs are 

used for training. The full set consists of 260,000 unique 5′ UTRs. A dramatic rise in model 

performance occurs from training on 6,500 (2.5%) to 26,000 (10%) sequences, which is likely due 

to the model learning the rules of uAUGs and uORFs (n = 20,000). (c) Evaluation of model 

performance as a function of the number of reads per fractions. Fraction reads were down-sampled 

and used for training and testing. Initial read counts per fraction ranged from 21M to 33M except 

for fraction 13 which had 10M. Sequences without uAUGs require more training examples than 

those with uAUGs (n = 20,000). (d) Five models were trained and tested independently through 

CNN (left) and 5-mer linear model (right) using randomly selected subsets of sequences. The 

median r-squared for CNN is 0.878 and the median r-squared for 5-mer linear model is 0.617. For 

2 box plots from left to right: (n = 5; min., 0.863; quartile (Q)1, 0.876; median, 0.878; Q3, 0.879; 

max., 0.885), (5; 0.604; 0.612; 0.613; 0.614; 0.616). 



 

 

 

Supplementary Fig. 8 

(a) CNN architecture to predict mean ribosome load (MRL) from 50-mer 5′ UTR sequences. (b) 

CNN architecture for predicting the polysome profile of a given 5′ UTR. The model differs from 

the MRL model in the number of nodes in the dense layer (80 rather than 40), the dropout from 

the dense layer (10% rather than 20%), and the single final linear node is replaced by 14 linear 

nodes corresponding to each fraction collected during polysome profiling. The output values sum 

to 1 and represent the relative abundance per fraction.  

  



 

 

 

 

Supplementary Fig. 9 

Model performance on 77 5’ UTRs designed and experimentally characterized by Ferreira et al. 

(Proceedings of the National Academy of Sciences 110, 11284-11289 (2013)). Flow cytometry 

was performed after delivery of reporter constructs to six different cell lines,  including human 

embryonic kidney cells (293T), mouse pre-B lymphocytes (PD31), human chronic myelogenous 

leukemia cells (K562), human colon cancer cells (HCT116), Chinese hamster ovary cells (CHO-

K1) and mouse plasmacytoma (MPC11). Only 5’ UTRs upstream of coding sequence begin with 

‘ATGG’ were used for model testing. Sequences were dropped if fluorescence data was missing 

for some cell lines. UTR length ranged from 3 nt to 47 nt, and sequences were zero-padded on 

the 5’ end to generate 50 nt input sequences for our model. UTRs with no upstream ATG (No 

uATG) are shown in red and UTRs with upstream ATG (uATG) are shown in blue. Our model’s 

prediction on mean ribosome load and the translation level measured by fluorescence assay were 

highly correlated across all cell lines (r2: 0.73-0.85, 293T: n = 77, PD31: n = 55, K562: n = 46, 

HCT116: n = 46, CHO-K1: n = 46, MPC11: n = 46).   

 

 



 

 

 



 

 

 



 

 

 
 



 

 

 
  



 

 

 
  



 

 

 

Supplementary Fig. 10 

(a) Visualization of filters from the first convolution layer of the eGFP model (before retraining) 

(Figure 2). For each filter we collected the top 2,000 8-mers in the eGFP library that showed 

maximal activation. These were then used to calculate position weight matrices and visualized as 

sequence logos. Some filters had fewer than 2,000 8-mers that showed activation. (b) Visualization 

of filters from the second convolution layer of the eGFP model (before retraining) (Figure 2). For 

each filter we collected the top 2,000 8-mers in the eGFP library that showed maximal activation. 

These were then used to calculate position weight matrices and visualized as sequence logos. Some 

filters had fewer than 2,000 8-mers that showed activation or no activation at all. (c) For 

convolution layers one and two, the correlation between filter activation and MRL for each filter 

at each position of the 5′ UTRs. If UTRs that show high filter activation have low MRLs then the 

two are negatively correlated. This shows the importance of each filter at each position for 

predicting MRL. 

 

 

  



 

 

 
 

Supplementary Fig. 11 

Performance of an early iteration of a mean ribosome load model that used a slightly different 

network architecture (Online Methods) relative to the main MRL model presented in Figure 2. 

This model was used with the genetic algorithm to design sequences for targeted expression (n = 

20,000). 

  



 

 

 



 

 

  



 

 

  



 

 

 
  



 

 

 

Supplementary Fig. 12 

(a-d) Following the sequence evolution of our genetic algorithm. Randomly initialized 50-mers 

were first selected for low ribosome loading (800 iterations) followed by selection for high 

ribosome loading (800 iterations) – UTRs were either permitted to use uATGs (a) or not (b). 

Two other subsets were randomly initialized but only evolved for high ribosome loading – UTRs 

were either permitted to use uATGs (c) or not (d). All unique sequences along a UTR’s 

evolution were synthesized (sub-libraries in the designed library) and tested via polysome 

profiling. The retrained model (red) closely matches the observed MRL (blue) and performs 

significantly better than the original model (green) that was used for evolving the sequences. (e) 

The observed MRLs of the top 500 UTRs in terms of MRL from the random library, human 

library, and the evolved library. Overall, sequences from the evolved library show higher 

ribosome loading. For 3 violin plots from left to right: (n = 1,000; min., 6.468; quartile (Q)1, 

6.702; median, 6.895; Q3, 7.126; max., 8.061, s.d., 0.292), (1,000; 7.012; 7.102; 7.203; 7.327; 

7.825; 0.16), (1,000; 7.362; 7.434; 7.52; 7.626; 8.292; 0.137). 

 

 

  



 

 

 

Supplementary Fig. 13 

(a) Comparing the performance of the original model used for evolving new sequences (left) to 

the retrained model performance (right) on subsets of the designed library. The three evolved UTR 

groups showed the most dramatic improvement with the retrained model. Notably, the original 

model made predictions of high MRL for many sequences that, when measured, showed moderate 

to low ribosome loading. These sequences are uridine-rich (red). The retrained model was able to 

predict MRL more accurately for these sequences. The retrained model also showed a small 

increase in performance when predicting MRL for truncated human UTRs (r2 improvement of 

0.023). For the control UTRs from the eGFP library, the retrained model showed a slight 

performance decrease (-0.019). These results indicate that the original model had difficulty 

predicting MRLs for UTRs with sequences that are unlikely to be found in a randomized library, 

such as UTRs with high poly-U content. (b) The model from Figure 2, which has an improved 

network architecture and shows higher accuracy than the model used for sequence evolution, was 

retrained in the same manner as the evolution model in Figure 3. The model performance 



 

 

significantly increased with all sub-libraries except for the eGFP control UTRs which decreased 

minimally (-0.007). (Sample sizes are identical for 4 columns in a and b. Target Expression: n = 

2,146, Stepwise Worst to Best (allow uATG): n = 1,987, Stepwise Worst to Best (no uATG): n = 

1,681, Human UTRs: n = 14,128, EGFP Controls: n = 1,626.) 



 

 

 

Supplementary Fig. 14 

(a) Predicting the change in mean ribosome load (MRL) between an SNV and its common 

sequence with log2 differences greater than 0.5 or less than -0.5 (n = 45). (b) Model prediction of 

‘spontaneous’ UTR variants created by oligo synthesis errors. 103 out of 2,308 showed MRL 

changes greater than 0.5 or less than -0.5 (log2) (n = 2,308).  

  



 

 

 

Supplementary Fig. 15 

 (a) Out-of-frame upstream open reading frames (OOF uORFs) and upstream AUGs (uAUGs) 

cause reduced loading of ribosomes while in-frame (IF) do not. When sequences do not contain 

any uAUGs (No uAUGs) or have in-frame uAUGs (IF uAUGs), longer UTR sequences show 

increased ribosome loading. For 16 box plots from left to right: (n = 1,256; min., 4.494; quartile 

(Q)1, 5.71; median, 5.982; Q3, 6.209; max., 6.944), (997; 4.015; 6.027; 6.308; 6.532; 7.261), (686; 

3.549; 6.211; 6.485; 6.741; 7.643), (392; 3.417; 6.235; 6.613; 6.974; 8.056), (145; 2.82; 5.728; 

6.086; 6.299; 6.829), (167; 3.558; 5.921; 6.307; 6.638; 7.179), (214; 3.386; 5.905; 6.379; 6.77; 

7.324), (166; 3.37; 5.983; 6.518; 6.943; 8.011), (389; 1.595; 3.353; 4.078; 4.786; 6.433), (449; 

1.591; 2.724; 3.71; 4.696; 6.704), (520; 1.588; 2.704; 3.457; 4.456; 6.737), (438; 1.695; 2.819; 

3.509; 4.498; 7.025), (210; 2.082; 3.807; 4.425; 4.992; 6.306), (387; 1.76; 3.651; 4.32; 5.281; 

6.587), (580; 1.606; 3.439; 4.475; 5.389; 6.954), (604; 1.298; 3.163; 4.048; 5.278; 7.342). (b) RNA 

sequencing read depth decreases with longer UTRs. All read counts are normalized to the 

maximum read count observed. All oligos used for 5’UTR construction were synthesized on the 

same array and the observed decrease is consistent with a coupling efficiency c < 1. A fit to the 



 

 

expression Nc where N is the length and c the coupling efficiency results in c = 0.954 as a 

reasonable estimate of the coupling efficiency in oligo array synthesis (blue line). For 8 box plots 

from left to right: (n = 1,000; min., 0.337; quartile (Q)1, 0.424; median, 0.841; Q3, 0.552; max., 

1), (1,000; 0.219; 0.271; 0.31; 0.357; 0.688), (1,000; 0.134; 0.168; 0.191; 0.22; 0.419), (1,000; 

0.055; 0.097; 0.116; 0.139; 0.286), (1,000; 0.048; 0.062; 0.071; 0.083; 0.165), (1,000; 0.029; 

0.036; 0.042; 0.05; 0.1), (1,000; 0.015; 0.021; 0.025; 0.029; 0.065), (600; 0.011; 0.014; 0.016; 

0.02; 0.046). (c) 7,600 random 5’UTR sequences with lengths from 25 to 100 nucleotides (100 

sequences at each length) were tested using the generalized model. The model was trained on a 

library of 76,319 random sequences spanning the same length range (r2: 0.838, n = 7,600). (d) 

7,600 human native 5’UTR sequences with varying lengths from 25 to 100 nucleotides (100 

sequences at each length) are tested using the generalized model (r2: 0.778, n = 7,600).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1. 

Linear regression modeling with position-specific k-mers. 1-mers to 6-mers were evaluated using 

the same training and test sets that were used in building the CNN model. 5-fold cross validation 

found the best regularization (ridge) parameters to limit overfitting (n = 20,000). 

 

 

k-mer r2 

1 0.1273 

2 0.3524 

3 0.6283 

4 0.6397 

5 0.6439 

6 0.5606 



 

 

Gene Phenotype Significance Obs. Diff. (log2) dbSNP uAUG Effects 

GNPAT Rhizomelic chondrodysplasia punctata Uncertain -1.41 rs201907247 Yes 

CSTB Unverricht-Lundborg syndrome Uncertain 0.56 rs776181852 No 

GALT Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase Pathogenic / Likely 0.56 rs111033654 No 

MLH1 not specified Uncertain -0.9 rs1016433173 Yes 

MSH6 not specified Uncertain -0.81 rs1064793670 Yes 

BBS7 Bardet-Biedl syndrome Uncertain 0.62 rs757523715 No 

GALT Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase Pathogenic / Likely 0.54 rs111033656 No 

GALT Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase Pathogenic / Likely 0.6 rs111033656 No 

COA6 not specified Benign / Likely -0.62 rs73099933 No 

PDE6C Achromatopsia, Cone-Rod Dystrophy, Recessive Uncertain -0.72 rs374900090 Yes 

TCTN3 not specified Benign / Likely -0.81 rs41291572 Yes 

HSPB1 Charcot-Marie-Tooth, Type 2, Distal hereditary motor neuronopathy Uncertain 0.59 rs372833436 No 

TARS2 not specified Benign / Likely 1.23 rs201336268 Yes 

ZMPSTE24 Lethal tight skin contracture syndrome, Mandibuloacral dysplasia Uncertain -0.67 rs200527699 Yes 

SMAD4 not specified Benign / Likely -0.61 rs1057523754 Yes 

CHRNA4 Autosomal dominant nocturnal frontal lobe epilepsy Benign / Likely -0.77 rs200259564 Yes 

TMEM127 Pheochromocytoma Pathogenic / Likely -1.5 rs121908813 Yes 

PNPO Pyridoxal 5′-phosphate-dependent epilepsy Uncertain -0.98 rs886053100 Yes 

SMAD3 Loeys-Dietz syndrome 3 Pathogenic / Likely 1.21 rs587776882 No 

LZTR1 not specified Benign / Likely -1.14 rs370616172 Yes 

CTSA Combined deficiency of sialidase AND beta galactosidase Benign / Likely -1.38 rs116893852 Yes 

TP53 Sarcoma Uncertain -0.64 rs137852791 No 

CPOX Hereditary coproporphyria Uncertain -0.89 rs867711777 Yes 

MPDU1 Congenital disorder of glycosylation Uncertain 0.75 rs370389790 No 

PEX12 not specified Uncertain -1.04 rs727504080 Yes 

MLH1 Hereditary cancer-predisposing syndrome, Lynch syndrome Uncertain -0.68 rs587779001 Yes 

SMAD3 not specified Uncertain 1.37 rs863223756 Yes 

SLX4 Fanconi anemia Uncertain -0.61 rs113023461 Yes 

POLE not specified Uncertain -0.68 rs1064796567 Yes 

MAP2K2 not specified Benign / Likely 0.66 rs1057520422 Yes 

NBN not specified Benign / Likely -0.75 rs730881843 Yes 

SYNE2 Emery-Dreifuss muscular dystrophy Benign / Likely 0.52 rs199566869 Yes 

UQCRB not specified Benign / Likely 0.75 rs373747569 Yes 

PDHX Pyruvate dehydrogenase complex deficiency Benign / Likely -0.6 rs2956112 Yes 

HSPB1 Charcot-Marie-Tooth, Type 2, Distal hereditary motor neuronopathy Uncertain 0.51 rs199602956 No 

RPL5 Diamond-Blackfan anemia Uncertain -0.87 rs376208311 Yes 

ETHE1 Ethylmalonic encephalopathy, not specified Uncertain 0.98 rs138958351 Yes 

FOXRED1 not specified Uncertain -1.24 rs778239850 Yes 

MKKS Bardet-Biedl syndrome, McKusick Kaufman syndrome Uncertain -1.03 rs886056499 No 

TTC19 not provided Pathogenic / Likely -0.9 rs769078093 No 

PHEX Familial X-linked hypophosphatemic vitamin D refractory rickets Uncertain -1.09 rs1057515841 No 

C19orf12 Neurodegeneration with brain iron accumulation 4 Uncertain 0.88 rs186970109 Yes 

SMPD1 Niemann-Pick disease, type A Pathogenic / Likely -0.64 rs875989837 Yes 

PRPH2 
Choroidal Dystrophy, Cone-Rod Dystrophy, Fundus albipunctatus,Vitelliform 
macular dystrophy Benign / Likely 0.59 rs114062933 

 
No 

ACADM Medium-chain acyl-coenzyme A dehydrogenase deficiency Pathogenic / Likely 1.15 rs1057516778 Yes 

 

Supplementary Table 4. 

45 ClinVar variants with MRL changes greater than 0.5 or less than -0.5 (log2). 30 variants cause 

significant MRL changes due to insertion or deletion of uAUG while the other 15 variants 

impact ribosome loading through other mechanisms.  

 



 

 

 

Supplementary Table 5. 

Primers used for library construction, IVT mRNA template, and reverse transcription. 

 

Primer # Sequence (5′ to 3′) 

220 gacgtgtgctcttccgatctNNNNNNNNNNgtctgggtgccctcgta 

252 atagggacatcgtagagagtcgtacttaNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNatgcctcccgagaagaagatc 

253 cacgctcttgatcttcttctcgggaggcat 

254 ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttcaaacaacagatggctggca 

282 atagggacatcgtagagagtcgtacttaNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNatgggcgaattaagtaagggc 

283 acagctcctcgcccttacttaattcgccca 

289 gacgtgtgctcttccgatctNNNNNNNNNNagatgaacttcagggtcagc 



 

 

Supplementary Note 1 – MRL Calculation 

 
In order to deal with the artifacts that different total reads in each fraction for each UTR 
may bring, we need to normalize the reads to compute out MRL for each UTR variant. 
Each UTR variant will have multiple reads depend on how many fractions are collected.  
For each UTR-n, it has reads from Rn0, Rn1, …, to Rnm etc., where m represents the 
number of ribosomes presented in that peak in the polysome profile. Firstly, relative reads 
for each UTR in the fraction (Relative-Rnm) will be computed in order to normalize 
differences in total read counts between fractions (Eq. 1). Then, the normalized reads 
(Normalized-Rnm) for each UTR will be computed based on Relative – Rnm in order to 
normalize differences in total read counts between UTRs (Eq. 2). Finally, MRL will be 
computed as the sum of product of normalized-Rnm with its corresponding number of 
ribosomes m (Eq. 3). 
 

Relative-Rnm =
Rnm

∑ Rnm𝑛
 

                                   (Eq. 1) 

Normalized-Rnm =
Relative-Rnm

∑ Relative-Rnm𝑚
=

Rnm

∑ Rnm𝑛

∑
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∑ Rnm𝑛
𝑚

 

              (Eq. 2) 
 

MRLn = ∑ (Normalized-Rnm × 𝑚)
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